3.588 \(\int \sqrt {\sec (c+d x)} (a+b \sec (c+d x))^2 \, dx\)

Optimal. Leaf size=135 \[ \frac {2 \left (3 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a b \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {4 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 b^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d} \]

[Out]

2/3*b^2*sec(d*x+c)^(3/2)*sin(d*x+c)/d+4*a*b*sin(d*x+c)*sec(d*x+c)^(1/2)/d-4*a*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/c
os(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/3*(3*a^2+b^2)*(c
os(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c
)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3788, 3768, 3771, 2639, 4046, 2641} \[ \frac {2 \left (3 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a b \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {4 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 b^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^2,x]

[Out]

(-4*a*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*(3*a^2 + b^2)*Sqrt[Cos[c + d*x
]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (4*a*b*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d + (2*b^2*Se
c[c + d*x]^(3/2)*Sin[c + d*x])/(3*d)

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3788

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[(2*a*b)/
d, Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rubi steps

\begin {align*} \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x))^2 \, dx &=(2 a b) \int \sec ^{\frac {3}{2}}(c+d x) \, dx+\int \sqrt {\sec (c+d x)} \left (a^2+b^2 \sec ^2(c+d x)\right ) \, dx\\ &=\frac {4 a b \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {2 b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}-(2 a b) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} \left (3 a^2+b^2\right ) \int \sqrt {\sec (c+d x)} \, dx\\ &=\frac {4 a b \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {2 b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}-\left (2 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} \left (\left (3 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=-\frac {4 a b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 \left (3 a^2+b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {4 a b \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {2 b^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.36, size = 93, normalized size = 0.69 \[ \frac {2 \sec ^{\frac {3}{2}}(c+d x) \left (\left (3 a^2+b^2\right ) \cos ^{\frac {3}{2}}(c+d x) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-6 a b \cos ^{\frac {3}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+b \sin (c+d x) (6 a \cos (c+d x)+b)\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^2,x]

[Out]

(2*Sec[c + d*x]^(3/2)*(-6*a*b*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + (3*a^2 + b^2)*Cos[c + d*x]^(3/2)*
EllipticF[(c + d*x)/2, 2] + b*(b + 6*a*Cos[c + d*x])*Sin[c + d*x]))/(3*d)

________________________________________________________________________________________

fricas [F]  time = 0.73, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (b^{2} \sec \left (d x + c\right )^{2} + 2 \, a b \sec \left (d x + c\right ) + a^{2}\right )} \sqrt {\sec \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^2*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 8.64, size = 514, normalized size = 3.81 \[ \frac {2 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (6 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a^{2} \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, b^{2} \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+12 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 a b \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a^{2}-\sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, b^{2}-6 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a b +12 a b \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 b^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{3 \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))^2,x)

[Out]

2/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1
)/sin(1/2*d*x+1/2*c)^3*(6*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+
1/2*c)^2)^(1/2)*a^2*sin(1/2*d*x+1/2*c)^2+2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/
2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*b^2*sin(1/2*d*x+1/2*c)^2+12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/
2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a*b*sin(1/2*d*x+1/2*c)^2-24*a*b*cos(1/2*d*x+1/2*c)*sin(1/2*
d*x+1/2*c)^4-3*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*a^2-(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*b
^2-6*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a*b+1
2*a*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+2*b^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)*(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^2*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))^2*(1/cos(c + d*x))^(1/2),x)

[Out]

int((a + b/cos(c + d*x))^2*(1/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \sec {\left (c + d x \right )}\right )^{2} \sqrt {\sec {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)*(a+b*sec(d*x+c))**2,x)

[Out]

Integral((a + b*sec(c + d*x))**2*sqrt(sec(c + d*x)), x)

________________________________________________________________________________________